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Abstract We describe a model for deploying radiation detectors on a transportation network
consisting of two adversaries: a nuclear-material smuggler and an interdictor. The interdic-
tor first installs the detectors. These installations are transparent to the smuggler, and are
made under an uncertain threat scenario, which specifies the smuggler’s origin and desti-
nation, the nature of the material being smuggled, the manner in which it is shielded, and
the mechanism by which the smuggler selects a route. The interdictor’s goal is to minimize
the probability the smuggler evades detection. The performance of the detection equipment
depends on the material being sensed, geometric attenuation, shielding, cargo and container
type, background, time allotted for sensing and a number of other factors. Using a stochastic
radiation transport code (MCNPX), we estimate detection probabilities for a specific set of
such parameters, and inform the interdiction model with these estimates.

1 Introduction

The Department of Homeland Security (DHS) has been installing portal detectors in the US
and these installations will continue.1 The Second Line of Defense (SLD) program of the
US Department of Energy (DOE) seeks to reduce the risk of illicit trafficking of nuclear
material through international airports, seaports, and border crossings. The program’s initial
efforts were in Russia but have grown to include other key transit states in Eurasia.2

1General Accounting Office, Combatting Nuclear Smuggling: DHS’s Decision to Procure and Deploy the
Next Generation of Radiation Detection Equipment is not Supported by its Cost-Benefit Analysis, GAO-07-
581T, March 2007.
2Department of Energy and National Nuclear Security Administration, NNSA’s Second Line of Defense
Program, Fact Sheet, September 2009, http://www.nnsa.energy.gov/news/2299.htm.
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The DHS and DOE are addressing a real threat. In the early 1990s, Russia inherited
roughly 600–850 metric tons of highly-enriched uranium (HEU) and plutonium, enough
material to make over 50,000 explosive devices,3 and the nuclear ambitions of rogue na-
tions make daily news. An International Atomic Energy Agency (IAEA) database includes
over 1000 incidents of trafficking of nuclear and radioactive material from 1993–2006 that
have been confirmed by a member country’s government.4 Fifty-five percent of these in-
volved nuclear material and 18 involved weapons-grade uranium or plutonium. Sometimes
a smuggler’s intent is difficult to discern, but according to the IAEA report, many of the
thefts of material were motivated by profit and a perceived demand on the illegal market.
Other smuggling attempts were apparently motivated by malicious intent. US efforts to as-
sist the Former Soviet Union in securing nuclear material are ongoing,5 but by themselves,
insufficient. An accurate inventory of the nuclear material that existed at the beginning of
the 1990s seems impossible.

SLD’s first detector installation was at Moscow’s Sheremetyevo International Airport in
September 1998. Then Secretary of Energy Bill Richardson and his Russian counterpart
Chairman Valeriy Draganov of the Russian Federation State Customs Committee dedicated
the equipment’s installation with a ribbon-cutting ceremony.6 According to the DOE, such
detector installations have two purposes: (i) to deter potential theft and smuggling of nuclear
material and (ii) to detect and therefore prevent actual smuggling attempts.

Importantly, considerable effort is being devoted to developing more sophisticated ra-
diation detectors. Less attention is devoted to how to best deploy these detectors over a
system-wide network to deter and interdict the smuggling of nuclear material. Well-designed
deployment can significantly improve system performance, and in this paper, we describe
a stochastic network interdiction model for locating radiation detectors. There is consid-
erable transparency in our strategies and would-be smugglers can access information that
aids their ability to circumvent our systems, and our model can capture this issue. A key
input to our interdiction model is the ability of radiation detectors to sense nuclear mate-
rial. Using plastic scintillator radiation portal monitors (RPMs) as a baseline detector, we
describe an efficient method for parametrically computing detection probabilities using a
limited number of computations with the much slower, standard radiation transport code
MCNPX (Monte Carlo N-Particle Extended) (MCNPX user’s manual 2008). Our approach
to efficiently computing detection probabilities builds a framework for hedging against a
large number of threat scenarios, without the computational bottleneck of standard radiation
transport simulations.

3General Accounting Office, Nuclear Nonproliferation: US Efforts to Help Other Countries Combat Nuclear
Smuggling Need Strengthened Coordination and Planning, Report to the Ranking Minority Member, Sub-
committee on Emerging Threats, and Capabilities, Committee on Armed Services, US Senate, GAO-02-426,
May 2002.
4International Atomic Energy Agency, Illicit Trafficking Database, Fact Sheet: January 1993–December
2006.
5Department of Energy and National Nuclear Security Administration, NNSA’s Second Line of Defense
Program, Fact Sheet, October 2009, http://www.nnsa.energy.gov/news/2676.htm.
6Department of Energy Press Release: Bill Richardson, Russian Federation Dedicate “Second Line of De-
fense”, US Nuclear Detection Technology to Help Secure Russian Borders, September 2, 1998.

http://www.nnsa.energy.gov/news/2676.htm
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2 Stochastic network interdiction problem

First, we describe our stochastic network interdiction problem (SNIP) on a general trans-
portation network, which could involve multiple countries. Then, we specialize to the com-
putationally simpler case of placing detectors on the border of one country. We call the latter
model BiSNIP, as it is SNIP specialized to a bipartite network, as we describe in detail be-
low. In Sect. 5 we consider two sets of single-country model instances, one involving Russia
and the other the United States.

We model two adversaries, an interdictor and a smuggler, and an underlying transporta-
tion network G(N,A). The smuggler starts at origin node o ∈ N and wishes to reach desti-
nation node d ∈ N . The probability that the smuggler evades detection while traversing arc
(i, j) ∈ A is qij if (i, j) has a detector and pij > qij if not. A smuggler can be caught by
indigenous law enforcement without detection equipment, and so pij < 1. Detection events
on distinct arcs are assumed to be mutually independent. The smuggler chooses an o–d path
to maximize his evasion probability. With limited resources, the interdictor must select arcs
on which to install detectors in order to minimize this probability.

The threat scenario, indexed by ω ∈ �, is unknown when detectors are installed, but
is governed by a probability mass function, pω,ω ∈ �, which is assumed to be known.
A threat scenario specifies the origin-destination pair, (oω, dω), as well as other details about
the nuclear material being smuggled and the manner in which it is shielded. (We discuss this
issue in more detail in Sect. 3.) So, the probability a smuggler evades detection if a detector is
installed on arc (i, j) is scenario dependent, i.e., qij = qω

ij . In general, the indigenous evasion
probabilities, pij , could also depend on the threat scenario. The bulk of what we present
is valid when pij = pω

ij , but in Sect. 4 we discuss a computationally valuable scenario-
aggregation scheme that arises naturally when pij does not depend on ω. In what follows,
“threat scenario ω” is often referred to as simply “smuggler ω.”

The probability the smuggler traverses the network undetected is a sum of conditional
evasion probabilities, each weighted by pω , over all threat scenarios. The timing of the
interdictor’s and smuggler’s decisions and the realization of the threat scenario is as follows:
First, the interdictor installs detectors on a subset of the network’s arcs subject to a budget
constraint. Then, a threat scenario is revealed and the smuggler selects an oω–dω path.

Naturally, the smuggler’s path choice is crucial in determining the interdictor’s detec-
tor placement choice. Models with limited information and gaming are important to con-
sider, since they may lead to different placement solutions, but in this paper we conserva-
tively assume the smuggler selects a path with full knowledge of the detector locations and
evasion probabilities. This approach is conservative in the following sense. If solving our
model yields a detector-placement plan and an associated system-wide evasion probability
of, say, p∗ then under that placement plan, the smuggler cannot achieve an evasion proba-
bility higher than p∗ regardless of his path choice. This is true even if the smuggler decides
to take an arbitrary route, takes a second-best route, or chooses a route by placing a prob-
ability distribution on the possible paths. Of course, for a particular smuggler movement
model, there may exist alternate placement plans that achieve a significantly better objective
function value than p∗.

Assuming transparency of detector locations is arguably reasonable. In Russia, the initial
installation was accompanied by a ribbon-cutting ceremony, and subsequent installations
were reported in the news. Completely sealing Russia’s 12,500 miles of borders is imprac-
tical, and so, in addition to catching nuclear smugglers, the SLD program seeks to deter
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would-be smugglers, e.g., who seek financial gain. Issues surrounding detector installation
in the US have also been openly reported.7

The SNIP formulation follows:

Network and sets
G(N,A) directed network with nodes N and arcs A

FS(i) set of arcs leaving node i

RS(i) set of arcs entering node i

AD ⊂ A arcs on which detectors may be placed

Data
f total budget for installing detectors
cij cost of installing a detector on arc (i, j) ∈ AD

Random elements
ω ∈ � sample point and sample space for threat scenarios
(oω, dω) realization of random origin–destination pair
pω probability mass function
pω

ij evasion probability for smuggler ω on (i, j); no detector installed
qω

ij < pω
ij evasion probability for smuggler ω on (i, j); detector installed

Interdictor’s decision variables
xij 1 if a detector is installed on arc (i, j) and 0 otherwise

Smuggler’s decision variables
yij positive only if smuggler traverses (i, j) and no detector is installed
zij positive only if smuggler traverses (i, j) and a detector is installed
ydω probability that smuggler ω, starting at oω, can reach dω undetected

Boundary conditions
xij , zij ≡ 0 (i, j) /∈ AD

Formulation

min
x∈X

∑

ω∈�

pωh(x,ω), (1)

where X = {x : ∑
(i,j)∈AD cij xij ≤ f,xij ∈ {0,1}, (i, j) ∈ AD}, and where

h(x,ω) = max
y,z≥0

ydω (2a)

s.t.
∑

(oω,j)∈FS(oω)

(yoωj + zoωj ) = 1 (2b)

∑

(i,j)∈FS(i)

(yij + zij ) =
∑

(j,i)∈RS(i)

(
pω

jiyji + qω
jizji

)
, i ∈ N \ {oω, dω}

(2c)

7National Journal Group. Global security newswire: Daily news on nuclear, biological and chemical weapons,
terrorism and related issues. http://gsn.nti.org/gsn/.

http://gsn.nti.org/gsn/
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ydω =
∑

(j,dω)∈RS(dω)

(
pω

jdωyjdω + qω
jdωzjdω

)
(2d)

yij ≤ 1 − xij , (i, j) ∈ AD (2e)

zij ≤ xij , (i, j) ∈ AD. (2f)

The value, h(x,ω), is the conditional evasion probability, given ω. The goal is to install
detectors, under the budget constraint x ∈ X, to minimize the evasion probability over all
threat scenarios, i.e., to minimize the objective function in (1). Each transportation link that
can receive a detector is modeled as two parallel arcs. If xij = 1 then flow may occur only
on the “detector” arc (zij ), and otherwise only on the “no detector” arc (yij ). Flow on arc
(i, j) is multiplied by that arc’s gain, either pω

ij or qω
ij . So, if Poω,dω is a path from oω to dω

then

ydω =
∏

(i,j)∈Poω,dω

[
pω

ij (1 − xij ) + qω
ij xij

]

is the probability that smuggler ω can traverse Poω,dω without being detected. The smug-
gler’s subproblem finds a path Poω,dω maximizing ydω by forcing one unit of flow out of oω

in (2b), enforcing flow conservation at all intermediate nodes in (2c), defining the flow that
reaches dω as ydω in (2d) and maximizing that value in (2a). Flow is forced on the appropri-
ate arc, and incurs the associated gain (actually, loss), by the interdictor’s decision variable
xij in constraints (2e) and (2f). We note that constraint (2f) can be dropped since pω

ij > qω
ij

means zij is positive only if xij = 1 in an optimal solution to the subproblem (2).
Installing a detector or a system of detectors, e.g., at an international customs border

crossing may be more naturally thought of as installing a detector on a node, not an arc.
However, we split such a border-crossing node into two nodes with an arc representing
travel through the checkpoint. A more general approach would allow the model to choose
among detectors of different types, e.g., based on different technologies, to be installed at
each location. While model (1) does not insist all detectors be identical, it does assume that
for each candidate location a specific type of detector has been specified.

When locating detectors, the interdictor knows: (i) the network topology, (ii) the indige-
nous detection probability on each arc, (iii) the detection probability given the presence of
a detector, (iv) the resource constraint, (v) the probability distribution governing the ran-
dom (o, d) pair, and (vi) the method by which the smuggler selects a path. After the threat
scenario ω is revealed, the smuggler selects an oω–dω path that maximizes the evasion prob-
ability, knowing (i), (ii) and (iii) as well as the detector locations. SNIP with h defined in (2)
is a bilevel stochastic mixed-integer program (MIP). In bilevel programs (e.g., Bard 1998;
Ben-Ayed 1993; Ishizuka et al. 1997) each player has an objective function, and these can
differ because the players’ motives differ. In our case, the objective function is the same for
both players, but the interdictor is minimizing that function and the smuggler is maximizing
it. In Pan and Morton (2008) we describe a decomposition algorithm that allows us to effec-
tively solve problem instances in which we install between 30 and 100 detectors on a subset
of 300 candidate locations with 3,000 transportation arcs and 500 threat scenarios.

In what follows we restrict attention to a simplified version of SNIP that arises when we
can only place detectors at border crossings of a single country. The most pressing problem
in our initial SLD work had potential detector locations restricted to customs checkpoints
leaving Russia. Nuclear material originally in Russia may no longer be there, and Russia
is not the only source for such material. So, another single-country model of interest is to
install detectors to minimize the probability a smuggler could enter the US with nuclear
material.
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The key to simplifying the formulation for the single-country case is that each oω–dω

path has exactly one arc on which the smuggler could encounter a detector. Let K be the set
of checkpoint arcs, i.e., arcs that a smuggler could traverse depending on the selected path,
that could contain a detector. For each ω, and checkpoint arc k, we compute the value of the
maximum-reliability path from oω to the tail of k, say γ ω

k,1, and the value of the maximum-
reliability path from the head of k to dω , say γ ω

k,2. Call the product of these two probabilities
γ ω

k = γ ω
k,1γ

ω
k,2, for all pairs of ω and k = (i, j) ∈ K . Then,

h(x,ω) = max
k∈K

{
γ ω

k pω
k (1 − xk), γ

ω
k qω

k xk

}
(3)

is the probability smuggler ω avoids detection. Linearizing (3), we obtain the MIP:

min
x,θ

∑

ω∈�

pωθω (4a)

s.t. x ∈ X (4b)

θω ≥ γ ω
k pω

k (1 − xk), k ∈ K,ω ∈ � (4c)

θω ≥ γ ω
k qω

k xk, k ∈ K,ω ∈ �. (4d)

BiSNIP (4) may be viewed on a bipartite network with arcs (ω, k) linking each threat sce-
nario with its checkpoints. Excluding the checkpoint, γ ω

k is the smuggler’s probability of
traveling from oω to dω , via k, undetected. This is multiplied by qω

k or pω
k depending on

whether a detector is installed at k. Variable θω is the conditional probability the smug-
gler avoids detection, given ω, and model (4) minimizes the (unconditional) probability the
smuggler avoids detection.

The set K could be indexed by ω because for a particular origin-destination pair, some
checkpoints are either impossible or unreasonable, and this is how we implement BiSNIP
in practice. That said, we can drop the dependence on ω without loss of generality because
for an impossible ω–k combination, we can set γ ω

k = 0. This notational simplicity will be
convenient in Sect. 4. We also note that we can replace constraint (4d) by the constraint
θω ≥ qω

max, ω ∈ �, where qω
max ≡ maxk∈K γ ω

k qω
k , ω ∈ �. We return to this and more involved

model improvements in Sect. 4.
There is a modest but growing literature on network interdiction. We do not attempt to

review this here, but point only to recent stochastic models of network interdiction (Bailey
et al. 2006; Cormican et al. 1998; Hemmecke et al. 2003) and references contained therein.
The base model we describe in this section was first proposed in Pan et al. (2003) and more
fully developed in Pan and Morton (2008) as was its bipartite special case in Morton et al.
(2007). See Atkinson and Wein (2008), Behrens et al. (2007), Brown et al. (2006, 2009) for
further related work.

This paper’s main contributions are as follows:

1. We use physics-based detection probability (DP) calculations to populate our interdic-
tion model, BiSNIP. An improved alarm algorithm accounts for baseline suppression
(Sect. 3.1), and we investigate the system-wide benefit of this algorithm on BiSNIP in-
stances in which detectors are placed at customs checkpoints leaving Russia (Sect. 5.1).

2. We demonstrate the tractability of using DP calculations coming from a computationally
expensive radiation transport code. Using relatively few radiation transport calculations,
we parameterize DPs, allowing us to obtain DPs for a large number of scenarios involving
the thickness of lead shielding placed around the nuclear material (Sect. 3.2).
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3. In tightening BiSNIP’s formulation, we provide qualitative insight on the role DPs play
under an intelligent, informed smuggler (Sect. 4.1). We provide conditions under which
we can aggregate threat scenarios in BiSNIP (Sect. 4.2) and hence handle many shielding
scenarios. This aggregation significantly reduces computational effort (Sect. 5.1).

4. We apply BiSNIP to a model instance under a range of budgets in which detectors are
placed at motor crossings entering the United States from Mexico and Canada. We obtain
important qualitative insights on the nature of optimal detector-deployment plans with
respect to natural geographic groupings of checkpoints (see Sect. 5.2).

The rest of the paper is organized as follows. In Sect. 3, we consider the computation
of DPs for a single detector. In Sect. 4, we tighten BiSNIP’s formulation and introduce our
technique for aggregating threat scenarios. In Sect. 5, we provide computational results and
analysis on the model instances involving the US and Russia. Finally, we provide concluding
remarks in Sect. 6.

3 Detection probabilities

We now turn to estimating a detector’s detection probability, under various threat scenar-
ios, ω. The probability that smuggler ω traveling through checkpoint k ∈ K is detected by
an installed radiation detector is q̄ ≡ 1 − qω

k , where we temporarily suppress dependence
of q̄ on ω and k for notational simplicity. We focus on two issues. First, we discuss how
the transporting vehicle suppresses background radiation and its effect on DP. We describe
an adjustment to the alarm algorithm to account for baseline suppression. Using this as
a surrogate for a higher-fidelity detector, we demonstrate the system-wide implications in
Sect. 5.1. Second, we discuss lead shielding placed directly around the special nuclear ma-
terial (SNM). We describe how to parametrically characterize DP using a limited number
of computationally-expensive runs of a standard radiation transport code. Our parameteriza-
tion can be used to hedge against a continuum of threat scenarios, without the computational
bottleneck of standard radiation simulations. Our method has the advantages that it is fast,
physics-based, and is a good approximation to the more detailed simulation. We show how
this parameterization can be put to use in BiSNIP in Sect. 4.2. Our description here of these
two issues in computing DPs is brief, and we refer to Thoreson (2009) and Thoreson and
Schneider (2009) for a more thorough development.

The standard way of deriving DPs is by simulating detector response to a radioactive
source via a stochastic radiation transport code such as MCNPX (MCNPX user’s manual
2008). Alarm algorithms are then applied to the simulation results to translate count rate
probability density functions (pdfs) into detection probabilities (Geelhood 2003). Alarm
thresholds are typically selected to control the false alarm probability (FAP). The DP and
FAP also depend on interrogation time, which is a primary concern for portal detectors,
where many short measurements generate a spatial spectrum profile. Checkpoints with por-
tal detectors therefore employ a two-tier screening process where the primary detector’s
alarm produces a secondary inspection. Our focus is on the primary detector as opposed
to detailed modeling of multi-tier systems (see, e.g., Boros et al. 2009; McLay et al. 2008;
Wein et al. 2006).

3.1 Baseline suppression

Vehicle profiles must be considered when estimating DP because they shield background
radiation. This baseline suppression can be approximately compensated for in real-time de-
tection. An alarm algorithm can adjust alarm thresholds by vehicle type as predicted using a
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particle transport model or empirical data. Lo Presti et al. (2006) have developed an exten-
sive library of suppressions by vehicle type and detector location.

Given the threshold, count rates, spectra and alarm algorithm, we compute DP using the
method of Geelhood (2003), which applies to both active and passive systems and involves
two steps. First, the pdf of the detection metric for a vehicle containing no source is estab-
lished. The metric may be gross count rate with or without baseline suppression correction,
photopeak count rate, or energy bin count ratio, depending on the alarm algorithm. Second,
the detection metric pdf for the smuggled cargo is calculated. With these pdfs in hand, the
alarm threshold is chosen so the FAP is acceptable in view of traffic flow and secondary
screening capacity.

We denote DP as q̄ , FAP as
¯
q , observation time as � [sec.], and alarm threshold count

rate as t [#/sec.]. The random number of counts of gamma ray photons that reach the detector
is modeled as a homogenous Poisson process. The rate of that process depends on whether
a vehicle is present and whether a special nuclear material (SNM) source is in that vehicle.
The background radiation process with no vehicle has expected count rate b [#/sec.]. When
a vehicle is being interrogated, baseline suppression reduces the background count rate from
b to ¯b [#/sec.]. The expected count rate for the SNM source is denoted s [#/sec.]. So, for a
vehicle with an SNM source, the random number of counts reaching the detector in interval
� has expectation and variance equal to (s + ¯b)�. Most contemporary alarm algorithms
establish thresholds based on the FAP using unsuppressed background because real-time
adjustment of the threshold requires knowledge of container geometry and cargo content.
Nonetheless, the increase in sensitivity from taking baseline suppression into account is
considerable, and algorithms to adjust the alarm threshold in real-time are being matured.
The Radiation Portal Monitor Project at Pacific Northwest National Laboratory (Robinson et
al. 2008) is developing so-called “injection-study” procedures that allow count rate profiles
for commercial vehicles to be drawn from a set of pre-computed profiles.

Given a specific scenario, we use MCNPX to compute, in three separate radiation trans-
port calculations, s, b and ¯b. The detector measures a superposition of the independent
suppressed background and SNM signals. The background calculation assumes typical ra-
dionuclide concentrations in soil and concrete. For our test case (described further below),
the baseline-suppressed background is found to be 13% lower than the unsuppressed back-
ground, consistent with experimentally observed values (Lo Presti et al. 2006). The count
rates are sufficiently large that we make the normal-distribution approximation to the Pois-
son. We denote by F(·, σ 2,μ) the cumulative distribution function of a normal random
variable with mean μ and variance σ 2. With this notation, we can represent the DP and FAP
using the standard gross-count algorithm as

q̄ = 1 − F(t�, (s + ¯b)�, (s + ¯b)�) (5a)

¯
q = 1 − F(t�,b�,b�). (5b)

We use (5) as follows: We first select a value for
¯
q (e.g., 0.01) and then use (5b) to determine

the alarm threshold, t . Using this value of t in (5a) we determine the DP, q̄ . Here, t is
computed via (5b) using the standard background, b. To evaluate the detection probability
in (5a), we use the (actual) suppressed background rate, ¯b, superpositioned with that of the
SNM source.

We can refine the alarm algorithm for a given false alarm probability if we instead use
the suppressed background process in both equations. That is, we use equations:

q̄ = 1 − F(t�, (s + ¯b)�, (s + ¯b)�) (6a)
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¯
q = 1 − F(t�, ¯b�, ¯b�). (6b)

Following the same steps described above with the same initial value of
¯
q , we find a smaller

value of t from (6b) and hence a larger DP, q̄ , from (6a). This improved algorithm takes base-
line suppression into account and would be feasible if the real-time procedures described in
Robinson et al. (2008), combined with the ability to obtain data regarding container speci-
fications and declared cargo, were put in place. In the analysis of Sect. 5.1 we discuss the
implications of this improved alarm algorithm on the system-wide evasion probability.

3.2 Parameterized detection probabilities: shielding thickness

The results from a small number of Monte Carlo transport calculations can be parameter-
ized to take into account variations in sampling time, alarm threshold, alarm algorithm,
position of the source relative to the detector, and shielding thickness. Here, we restrict
attention to shielding thickness. The case of a gross-count alarm algorithm is in fact the
most difficult to parameterize, since in contrast to an energy-windowed algorithm, Compton
scattered, Bremsstrahlung and other secondary radiation contribute appreciably to the sig-
nal. The source count rate, s, discussed above is now a function of the shielding thickness
around the source. The standard method for finding s is to take a given source configura-
tion, mass and shape and perform a radiation transport calculation for a specific shielding
material and thickness.

Using the error function, defined in terms of the standard normal distribution function as
erf(x) = 2F(

√
2x,1,0) − 1, we can re-express (6) as

q̄ = 1

2
− 1

2
erf

(
t − ¯b − s√

2(¯b + s)

)
(7a)

t = ¯b + √
2¯b erf−1(1 − 2

¯
q), (7b)

where for simplicity we set � = 1. For the moment, the expected source count rate, s,
corresponds to a specific shielding thickness. Combining (7a) and (7b) yields the DP as a
function of the source, given a FAP and suppressed background:

q̄ = 1

2
− 1

2
erf

(√
2¯b erf−1(1 − 2

¯
q) − s√

2¯b + 2s

)
. (8)

Repeating this derivation beginning with (5), i.e., assuming the alarm threshold is computed
ignoring baseline suppression, leads to the decreased detection probability of

q̄ = 1

2
− 1

2
erf

(
b + √

2b erf−1(1 − 2
¯
q) − ¯b − s√

2¯b + 2s

)
. (9)

Instead of performing a computationally-expensive transport calculation for each shielding
thickness, we parametrize source count rate s as a function of shielding thickness τ [cm] via

s(τ ) = α1e
−β1τ + α2e

−β2τ , (10)

where α1 + α2 is the count rate in the absence of shielding, and β1 [1/cm] and β2 [1/cm]
are attenuation coefficients. For a narrowly energy-windowed detection algorithm, we could
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have α2 = 0 and β1 would be the true attenuation coefficient of the material at that energy,
since any scattering and absorption events would remove the radiation from the window
being considered. Otherwise, the additional exponential term in (10) helps capture different
attenuation coefficients at different photon energy levels. Under this parameterization, we
can run relatively few transport calculations to obtain data (s(τ ), τ ), and perform a nonlinear
regression to estimate the four parameters α1, α2, β1 and β2. With these parameters in hand,
we now parameterize DP in terms of shielding thickness τ by substituting s = s(τ ) from
(10) into (8) and (9) for the two alarm algorithms described in Sect. 3.1.

We now turn to an example calculation, involving 8 kg of HEU smuggled in a standard
53-foot truck-trailer. The detector consists of two polyvinyl toluene (PVT) panels with di-
mensions 3.8 cm × 36 cm × 173 cm. The shielding is a lead shell whose thickness we vary.
The source spectrum is generated using the RadSrc code package (Gronberg 2007). Average
US terrestrial background and an interrogation time of � = 1 second are assumed (consist-
ing of a sum of counts from ten 0.1 second interrogation intervals) with a vehicle speed of
2.2 mph. We compute detection probabilities using a false alarm probability of

¯
q = 0.01.

We run a series of MCNPX simulations at various shielding thickness of a concentric
lead sphere. The data collected are (s(τ ), τ ) for shielding thicknesses 0.1–10.0 cm, and are
plotted in Fig. 1a. We estimate α1, β1, α2, and β2 as 2.75 × 106 [#], 15.2 [1/cm], 6.08 ×
104 [#], and 1.10 [1/cm] respectively. Figure 1a also plots the corresponding equation (10).
Visually, the fit appears to be reasonable and the adjusted R2 from fitting is 0.99. Figure 1b
then plots the detection probability q̄ versus shielding thickness as calculated with baseline
suppression correction (8), and in its absence (9).

Of course, the shielding thickness a smuggler would use is unknown to us when we must
plan our detector deployment. The optimal system-wide deployment of detectors depends
on the distribution of threat scenarios we choose to hedge against. The parameterization
method we have described allows us to consider many more, even a continuum, of scenarios
by providing physics-based calculations for rapidly computing detection probabilities.

4 Improving the BiSNIP formulation

Our initial attempts to solve the BiSNIP model (4) using a branch-and-bound solution
method indicated that BiSNIP’s linear programming relaxation can produce very weak lower
bounds. In this section, we begin by describing a straightforward procedure to tighten the
formulation. Then, we describe how certain threat scenarios can be aggregated and still ob-
tain an equivalent optimization model.

4.1 Tightening BiSNIP

The following proposition tightens constraints (4c) and effectively eliminates constraints
(4d) in the BiSNIP model.

Proposition 1 Consider the BiSNIP model (4), let qω
max ≡ maxk∈K γ ω

k qω
k , and assume 0 ≤

qω
k ≤ pω

k ≤ 1 and 0 ≤ γ ω
k ≤ 1 for all k ∈ K , ω ∈ �. Then the inequalities

θω ≥ γ ω
k pω

k − (γ ω
k pω

k − qω
max)xk, k ∈ K, ω ∈ � (11a)

θω ≥ qω
max, ω ∈ � (11b)

are valid for BiSNIP.
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Fig. 1 Part (a) of the figure
shows the number of counts
received at the detector for an
8 kg sphere of HEU as a function
of thickness of lead shielding.
The solid line represents the fit
function, s(τ ), while the circles
correspond to the data values
obtained in MCNPX
experiments. Part (b) uses s(τ ) in
(8) and (9) to plot detection
probability versus shielding
thickness under the algorithms
that ignore, and account, for
baseline suppression

(a)

(b)

Proof Let k∗ ∈ argmaxk∈Kγ ω
k qω

k for some ω ∈ �. If xk∗ = 1, then constraint (4d) dominates
(4c) and yields θω ≥ γ ω

k∗qω
k∗ = qω

max. And, if xk∗ = 0 then constraint (4c) dominates (4d) and
yields θω ≥ γ ω

k∗pω
k∗ ≥ γ ω

k∗qω
k∗ = qω

max. This proves the validity of (11b). Now for any k ∈ K , if
xk = 1 then (11a) becomes (11b), and if xk = 0 then (11a) is equivalent to (4c). Thus (11a)
is valid as well. �

We can view the right-hand side of (11b) as providing an optimistic bound, from the
interdictor’s perspective, on the evasion probability of smuggler ω. Then (11a) is simply a
strengthened version of (4c) in which the right-hand side drops down to the lower bound
qω

max instead of zero when xk = 1.
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We can replace constraints (4c) and (4d) in BiSNIP with (11a) and (11b) since every con-
straint in the former set is dominated by some constraint in the latter. In doing so we obtain
a model with half as many structural constraints and at least as strong a linear programming
relaxation. Furthermore, defining θ̄ω = θω − qω

max, we can transform BiSNIP into a model in
which θ̄ω has simple lower bounds of zero:

min
x,θ̄

∑

ω∈�

pωθ̄ω (12a)

s.t. x ∈ X (12b)

θ̄ω ≥ rω
k (1 − xk), k ∈ K, ω ∈ �, (12c)

where rω
k = (γ ω

k pω
k − qω

max)
+ and where (·)+ = max(·,0). Here γ ω

k pω
k ≤ qω

max implies that
rω
k = 0 and in this case, the corresponding constraint (12c) reduces to a nonnegativity con-

straint. This occurs when smuggler ω prefers the checkpoint with evasion probability qω
max

to that of checkpoint k. Model (12) implicitly ignores such checkpoint-smuggler pairs.
Model (12) is equivalent to BiSNIP in that both models have the same set of opti-

mal solutions for locating the detectors, but their objective functions differ by the constant∑
ω∈� pωqω

max. We can view this as a transformation to a model in which the radiation de-
tectors are perfectly reliable, i.e., model (12) has the form of model (4) with qω

k = 0.
In the next section we discuss how smuggler ω rank orders the checkpoints in set K .

Looking at model (12) smuggler ω would rank order the checkpoints k by sorting the associ-
ated values rω

k , k ∈ K . Note that only the largest of the γ ω
k qω

k values for each ω ∈ � actually
contributes to the transformed model (through qω

max) since each smuggler is guaranteed an
evasion probability which is at least that high. This implies, perhaps counterintuitively, that
a smuggler only considers the probability of being caught by indigenous law enforcement
and not the effectiveness of detection equipment at each checkpoint when ranking check-
points. Detection probabilities do, however, influence the number of positive rω

k values and
consequently the number of checkpoints a smuggler could traverse with a positive probabil-
ity of evading detection in the transformed model (or with a probability that exceeds that of
qω

max in the original model).

4.2 Scenario aggregation

We now focus our discussion on the transformed model (12) but suppress the “bar” notation
on θω for simplicity. Suppose that for some pair of smugglers ω,ω′ ∈ � we can index the
checkpoints in K , k1, k2, . . . , k|K|, such that rω

k1
≥ rω

k2
≥ · · · ≥ rω

k|K| and rω′
k1

≥ rω′
k2

≥ · · · ≥
rω′
k|K| . That is to say both smugglers, while they may have different evasion probabilities at

some or all checkpoints, can rank-order the checkpoints in an identical manner.
The motivation for considering the above situation arises as follows. Suppose the indige-

nous evasion probabilities do not depend on the threat scenario. Consider two smugglers, ω

and ω′, that are identical in every way, including their origin-destination pair, the mass and
type of material they smuggle, etc., except that smuggler ω shields his material better than
does smuggler ω′. Then, for each checkpoint the indigenous evasion probabilities associated
with traveling from origin to destination via that checkpoint are identical for both smugglers,
pω

k γ ω
k = pω′

k γ ω′
k for all k ∈ K . And, the evasion probability at each checkpoint is larger for

the smuggler with better shielding, qω
k > qω′

k for all k ∈ K . This then results in smugglers
ω and ω′ ordering their checkpoints in an identical manner. As suggested above, there may
be fewer positive values of rω

k , k ∈ K , than of rω′
k , k ∈ K , but they satisfy the requisite
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(inclusive) ordering condition. The same result can arise, e.g., when the two smugglers are
carrying different masses of nuclear material, and it can arise for distinct origin-destination
pairs, typically in close geographic proximity. It can also arise when the indigenous evasion
probabilities depend on the threat scenario, as long as their ordering is identical. Specifically,
since rω

k = (γ ω
k pω

k − qω
max)

+ two smugglers with different but identically ordered γ ω
k pω

k val-
ues can be aggregated.

For ω and ω′ satisfying the identical-ordering assumption we have θω = rω
k∗ and θω′ =

rω′
k∗ , where k∗ ∈ argmaxk∈Krω

k (1 − xk) and k∗ ∈ argmaxk∈Krω′
k (1 − xk) can be taken to be the

same checkpoint. The contribution of θω and θω′
to the objective function (12a) is pωθω +

pω′
θω′

. So, we can replace ω and ω′ with a single scenario, say ω̄. The objective function
coefficient of θ ω̄ is equal to pω + pω′

, and the evasion probability at each checkpoint k ∈ K

is

pωrω
k + pω′

rω′
k

pω + pω′

for scenario ω̄. Extending this idea to more scenarios yields the following proposition.

Proposition 2 Consider model (12) and let x ∈ X. Suppose there exists a partition, �n,
n ∈ N , of � such that every smuggler in a particular subset �n orders his evasion prob-
abilities in an identical fashion. That is, for each n ∈ N there exists kn

1 , kn
2 , . . . , kn

|K| such
that rω

kn
1

≥ rω
kn

2
≥ · · · ≥ rω

kn|K|
≥ 0 for all ω ∈ �n. Let θωn = maxk∈K r

ωn

k (1 − xk) where

r
ωn

k = ∑
ω∈�n pωrω

k /pωn and where pωn = ∑
ω∈�n pω . Then pωnθωn = ∑

ω∈�n pωθω .

Proof Under the ordering assumption for rω
k , ω ∈ �, for each x ∈ X and n ∈ N , there exists

a k∗ such that rω
k∗ = maxk∈K rω

k (1 − xk), ∀ω ∈ �n. Since the pω are nonnegative, the same
k∗ also maximizes

∑
ω∈�n pωrω

k (1 − xk). Thus,

pωnθωn = max
k∈K

pωnr
ωn

k (1 − xk)

= max
k∈K

∑

ω∈�n

pωrω
k (1 − xk)

=
∑

ω∈�n

pω max
k∈K

rω
k (1 − xk)

=
∑

ω∈�n

pωθω.
�

Corollary 3 Under the hypotheses of Proposition 2, the following model is equivalent to
model (12):

min
x,θ

∑

n∈N

pωnθωn

s.t. x ∈ X (13)

θωn ≥ r
ωn

k (1 − xk), k ∈ K, n ∈ N .

In the equivalent aggregated model (13), r
ωn

k and θωn are still conditional evasion probabil-
ities but are now conditioned on the event ω ∈ �n whereas their counterparts in (12) were
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conditioned on the realization of a single threat scenario. Similarly pωn = P (�n) is the
probability that a threat scenario in �n is realized.

Finally, this aggregation can be performed even if �n has a continuum of scenarios. This
could arise if we have a continuous distribution on the thickness of lead shielding as con-
sidered at the close of Sect. 3. To make this concrete, let �n correspond to all shielding
scenarios for a specific origin-destination pair for a specific type and mass of SNM, and as-
sume: the shielding thickness, τ , has pdf φ(·), the indigenous detection probabilities γk and
pk do not depend on the threat scenario, and qτ

k = q(τ) = 1− q̄(τ ) is identical for all k (e.g.,
because identical detectors can be deployed in an identical manner in geographically distinct
but otherwise identical settings). Then the continuous analog of r

ωn

k from Proposition 2 is
given by

r
ωn

k =
∫ (

γkpk −
[

max
k∈K

γk

]
q(u)

)+
φ(u)du/P (�n).

When we do not account for baseline suppression, q(τ) = 1 − q̄(τ ) is defined by (9) and
(10), and when we do account for baseline suppression, q(τ) is defined by (8) and (10).
Given this parameterized q , and τ ’s density φ, we can numerically compute this one-
dimensional integral.

5 Numerical results and analysis

This section presents results using two sets of BiSNIP instances, the first involving Russia
and the second the United States. Our goal is to illustrate the types of insights that BiS-
NIP can provide and to understand the computational benefit of the scenario aggregation
procedure described in Sect. 4.2.

The Russian model involves a transportation network over 79 oblasts with 33 storage
sites of SNM, which we model as being vulnerable to theft, along with eight destinations
outside of Russia to where a smuggler may wish to travel. We consider five equally-likely
lead shielding scenarios of the SNM, and we view these scenarios as surrogates for the
smuggler’s level of sophistication. This leads to |�| = 33 · 8 · 5 = 1320 threat scenarios,
prior to scenario aggregation. In the problem instances we consider we restrict attention
to motor vehicle crossings, and consider 231 such customs checkpoints departing Russia.
A subset of these checkpoints receive SAIC Exploranium AT-900 PVT detectors, i.e., the
type of detector for which we presented DP calculations in Sect. 3.

In Sect. 5.1, we consider the Russian model under the two detection algorithms described
in Sect. 3 to illustrate the system-wide effect of having enhanced detection capability. The
first detection algorithm is the standard gross-count algorithm, which does not account for
baseline suppression; see (5) and the associated discussion. The second detection algorithm
accounts for baseline suppression of the transporting cargo truck-trailer; see (6). The results
presented here are based on HEU, and we again use an 8 kg sphere shielded in a concentric
sphere of lead. Section 5.1 also demonstrates the computational value of scenario aggrega-
tion on these same Russian BiSNIP instances.

Section 5.2 discusses results from US model instances, restricting attention to land border
crossings entering the continental US from Mexico and Canada. Using a North American
road network, we model 7 origins in Mexico, 7 origins in Canada and 10 destinations in
the US, giving a total of |�| = 140 threat scenarios. In both models, since all detectors are
identical, we use a cardinality-constrained special case of the BiSNIP model, i.e., ck = 1,
for all k ∈ K , in constraint set X, and we solve the model for various budget values, f ,
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representing the number of border crossings equipped with detectors. Each checkpoint has
an indigenous evasion probability based on its perceived vulnerability, pk , and this varies
by checkpoint, k. However, facing the same threat specified by ω, we assume detectors in
distinct locations behave identically and the probability a smuggler evades detection, by the
detector, is qω , which does not depend on k. If a detector is installed at k we assume both
the indigenous detection capability and the detector technology are independently employed
so that qω

k used in (4d) is given by qω
k = qωpk . If ω only specifies the origin-destination

pair (e.g., because distinct shielding scenarios have already been aggregated) then we can
drop q’s dependence on ω so that qω

k = qpk for some constant q . The indigenous evasion
probabilities in both models are based on a multi-attribute factor model described in detail
in Witt (2003). All of the MIPs associated with both sets of BiSNIP instances were solved
via the commercially-available CPLEX software (ILOG CPLEX 2008).

5.1 Russian model

Figure 2 shows the evasion probability as a function of the number of detectors we install
in the Russian model, and it does so for both alarm algorithms, i.e., with, and without, ac-
counting for baseline suppression. The former alarm algorithm yields smaller evasion prob-
abilities and the gap between the evasion probabilities for the two systems grows with the
number of detectors installed. Generally speaking, both sets of results exhibit diminishing
returns with respect to decreasing the evasion probability as the number of detectors grows.
That said, there are some interesting features, such as the larger drop in evasion probabil-
ity as we go from 20 to 25 detectors under the baseline suppression alarm algorithm. The
objective function value on the y-axis in Fig. 2 has been scaled to one if no detectors are
installed, and hence instead of an evasion probability, the y-axis is the ratio of the evasion
probability when installing a number of detectors to that when no detectors are installed.

We further investigate the computational value of the scenario aggregation scheme de-
scribed in Sect. 4.2. We use the same two sets of Russian BiSNIP instances, i.e., one with
detectors that use the baseline suppression alarm algorithm and one that does not. These
models have 1320 scenarios based on five equally-likely shielding scenarios and 264 origin-
destination pairs. So, aggregating the shielding scenarios alone yields a problem with 264
scenarios. However, it turns out that further reduction is possible. Threat scenarios with dif-
ferent origin-destination pairs still sometimes have identical rank-orderings for checkpoints
due to geographic proximity and sparse road networks in parts of Russia. The result is that
the 264 scenarios can be further reduced to an equivalent model with a total of 21 scenarios.

Table 1 reports computation times for problems with f = 10,20, . . . ,120 detector in-
stallations for the problem instances with, and without, the baseline suppression alarm algo-
rithm and with, and without, the scenario aggregation procedure. The runtimes for the model
instances with baseline suppression exceed those for the model instances without baseline
suppression. This is not surprising, as the smaller evasion probabilities, qω

k , for the former
model tend to lead to weaker linear programming relaxations as the binary xk variables
fractionate over a larger number of checkpoints. Entries in the table labeled as “×” indi-
cate that the runtime exceeded 2 hours. The computation times reported in this section were
on a 3.73 GHz Dell Xeon dual-processor machine with 8 GB of memory, running CPLEX
version 9.1 with an absolute tolerance of 0.0001.

The results of Table 1 suggest there is substantial value in the scenario aggregation pro-
cedure. The bulk of the unaggregated models result in runtimes exceeding two hours. All
the runtimes for the aggregated model instances are under 15 minutes and more than half are
under one minute. We note that the original and aggregated models have the same number
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Fig. 2 The figure shows the improvement factor as a function of the number of detectors installed for two
alarm algorithms, one with and the other without accounting for baseline suppression. The results come from
the BiSNIP model restricted to motor crossings in Russia

of binary variables but the latter has 21 instead of 1320 continuous variables. As shown in
Sect. 4.2 the original and aggregated models are mathematically equivalent, i.e., there is no
loss of fidelity as a result of aggregation.

5.2 US model

Figure 3 shows the 136 motor-crossing checkpoints we consider in the US model instances.
The figure also indicates four clusters of checkpoints important in results we describe below.
We again solve the associated BiSNIP instances for a range of values of f , the number of
detectors we can install. These hedge against 140 origin-destination threat scenarios, with
half originating in Canada and the other half in Mexico. In addition to ranging f we assume
the effectiveness of the detection equipment is independent of the scenario and checkpoint,
that is qω

k = qpk for some constant q . We create multiple model instances by ranging the
value of q .

Figure 4 shows the optimal evasion probability over all threat scenarios versus the budget
for four values of the detector effectiveness, q . As in Sect. 5.1, the evasion probability is
reported as a fraction of that when no detectors are installed. Significant jumps in the graph
occur when we are given just enough detectors to interdict an entire cluster of checkpoints.
For example, we notice a large decrease in the evasion probability as the budget increases to
f = 34 as such a budget allows us to interdict every checkpoint along the Mexican border.
Smaller but still significant jumps occur when the budget increases to 11, allowing us to
interdict all checkpoints in Mexico east of Big Bend (see Fig. 5), and when the budget
increases to f = 97, allowing us to interdict all checkpoints in Mexico and all checkpoints
in Canada west of Lake Huron (see Fig. 6a and 6b).
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Table 1 Solve times (in seconds) for the Russian BiSNIP instances for a range of the number of checkpoints,
f , which receive detectors. The second and third columns correspond to the problem in which we account
for baseline suppression in the alarm algorithm, and the fourth and fifth columns correspond to the problem
in which we do not account for baseline suppression. All “Original” problem instances have 1320 scenarios
while all “Aggregated” instances have 21 scenarios

f Baseline Suppression No Baseline Suppression

Original Aggregated Original Aggregated

10 1038.00 12.18 679.30 4.75

20 × 44.50 2665.54 13.69

30 × 28.17 1598.41 12.87

40 × 38.68 4282.93 34.03

50 × 38.68 5437.07 60.39

60 × 575.93 × 174.01

70 × 209.17 × 180.37

80 × 302.47 × 115.34

90 × 51.74 × 56.99

100 × 101.40 × 53.02

110 × 62.11 × 52.44

120 × 868.06 × 319.51

Fig. 3 The figure shows 136 motor-crossing checkpoints from Canada and Mexico into the continental
United States, and groups the checkpoints into four clusters

Also noteworthy is the fact that for small values of the budget (f < 11), the optimal
solution interdicts checkpoints along the Great Lakes (see Fig. 5a). Intuitively this is because
there are more gaps between those checkpoints than there are anywhere else. Finally, we
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Fig. 4 The figure shows the improvement factor as a function of the number of detectors installed for the
US model. The four plots correspond to different levels of effectiveness of the detectors, specifically, with
q = 0.75, 0.50, 0.25 and 0 in qω

k
= qpk

note that the solutions did vary as detectors become less effective. A notable example of
this is that with more effective detectors (q = 0,0.25,0.5), there is an incentive to shift all
detectors from eastern Canada to western Canada when the budget increases from 96 to 97.
This was not the case with the most ineffective detectors (q = 0.75) as such detectors could
not convince smugglers with origins in western Canada to travel around the Great Lakes to
traverse a detector-free checkpoint (see Fig. 6c).

6 Summary

We have presented a stochastic network interdiction model, which can provide decision
support for locating radiation detectors to thwart nuclear smuggling. The model takes as
input detection probabilities, which we estimate via physics-based simulations using the
industry-standard MCNPX radiation transport code.

We described an alarm algorithm that accounts for shielding of terrestrial radiation by
the transporting vehicle’s undercarriage and cargo, an effect known as baseline suppression.
We compared the detection probability for a PVT detector using this algorithm versus one
that ignores baseline suppression. We view this as two alternative systems and compare their
relative performance in decreasing evasion probability on a set of model instances involving
motor-crossing checkpoints leaving Russia. Our aim is not to focus on the benefits of using
the baseline suppression algorithm, per se, but rather to show how our interdiction model
can compare the merits of alternative systems. For example, we could compare the potential
benefits of a novel detector with that of an existing system.
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Fig. 5 Part (a) of the figure
shows the optimal solution to the
US model instance with perfectly
reliable detectors, q = 0, and
with a budget to install detectors
at f = 10 locations. Part (b) of
the figure is identical but for
f = 11. Note that the full number
of checkpoints is not visible in
the map due to their close
proximity

(a)

(b)

We proposed a method to parameterize a detector’s performance, in terms of detection
probability, with respect to the thickness of shielding. Using regression and MCNPX exper-
iments we found an exponential decrease in count-rate to be a plausible model for thickness
of lead shielding, even under a gross-count algorithm, so that more complicated treatment
of radiation build-up is not necessary. We showed analytically how our uncertainty on the
shielding thickness that a smuggler may use affects uncertainty on the detection probability.
With this as motivation, we described a scenario aggregation scheme for our single-country
stochastic network interdiction model. This scheme allows us to aggregate multiple smug-
glers provided that they rank-order checkpoints identically. Such aggregation is possible
even when we consider a continuum of shielding scenarios. Our computational results sug-
gest the benefits of aggregation can be substantial.

A second single-country model considered how to locate radiation detectors on the US-
Canada and US-Mexico borders to minimize the probability a nuclear-material smuggler
can travel through a motor crossing into the US. Results from these model instances sug-
gest significant improvements in reducing the evasion probability when enough resources
are allocated to equip an entire geographic cluster of border crossings, and also illustrate
qualitative differences in solutions that arise depending on the effectiveness of the detection
equipment.
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Fig. 6 Part (a) of the figure
shows the optimal solution to the
US model instance with perfectly
reliable detectors, q = 0, and
with a budget to install detectors
at f = 96 locations. Part (b) of
the figure is identical but for
f = 97. Part (c) of the figure is
for f = 97 and q = 0.75

(a)

(b)

(c)

In this paper’s problem instances: We restrict attention to motor crossings; we assume a
single type of SNM is smuggled in a 53-foot truck trailer; we model a single type of PVT
detector; and, we restrict attention to Russia or the United States, as opposed to a more global
transportation network. In future work, we will improve the model’s scope and fidelity in
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multiple ways. Our goal in this paper is to demonstrate the type of analyses that can be
performed with our interdiction model, and indicate how high-fidelity detection probability
calculations can be employed in such a model.
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